Как измерить сопротивление изоляции мегаомметром


Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

  • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
  • На отображаемые данные влияет равномерность вращения динамо-машины.
  • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
  • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объект Уровень напряжения (В) Минимальное сопротивление изоляции (МОм)
Проверка электропроводки 1000,0 0,5>
Бытовая электроплита 1000,0 1,0>
РУ, Электрические щиты, линии электропередач 1000,0-2500,0 1,0>
Электрооборудование с питанием до 50,0 вольт 100,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт 250,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт 500,0-1000,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В 2500,0 0,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Правила безопасности при работе с мегаомметром

При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

  • При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
  • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
  • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
  • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
  • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

Подборка видео по теме

Как измерить сопротивление изоляции двигателя

Сопротивление изоляции обмотки

Если двигатель не вводится в эксплуатацию сразу по прибытии, важно защитить его от внешних факторов , таких как влажность, высокая температура и загрязнения, чтобы избежать повреждения изоляции. Перед вводом двигателя в эксплуатацию после длительного хранения необходимо измерить сопротивление изоляции обмотки.

Как измерить сопротивление изоляции двигателя (фото любезно: elecls.cc.oita-u.ac.jp)

Если двигатель находится в месте с высокой влажностью, необходимо периодически проверять .

Практически невозможно определить правила для фактического минимального значения сопротивления изоляции двигателя, поскольку сопротивление варьируется в зависимости от метода изготовления, состояния используемого изоляционного материала, номинального напряжения, размера и типа. На самом деле, многолетний опыт определяет, готов ли двигатель к работе или нет.

Общее эмпирическое правило составляет 10 МОм или более.

Значение сопротивления изоляции Уровень изоляции
2 МОм или меньше Плохо
2-5 МОм Критическое
5-10 МОм Ненормальный
10-50 МОм Хорошо
50-100 МОм Очень хорошо
100 МОм или более Отлично

Измерение сопротивления изоляции осуществляется с помощью мегомметра - омметра с высоким сопротивлением.Вот как работает тест: постоянного тока напряжением 500 или 1000 В подается между обмотками и землей двигателя.

Проверка изоляции двигателя на массу

Во время измерения и сразу после этого на некоторых клеммах присутствует опасное напряжение, и НЕ ДОЛЖЕН БЫТЬ ПРИКЛЮЧЕНО .

В этой связи стоит упомянуть три момента: Сопротивление изоляции, Измерение и проверка.


1.Сопротивление изоляции


2. Измерение

  • Минимальное сопротивление изоляции обмотки на землю измеряется при 500 В пост. Тока . Температура обмотки должна быть 25 ° C ± 15 ° C .
  • Максимальное сопротивление изоляции должно измеряться при 500 В постоянного тока с обмотками при рабочей температуре 80 - 120 ° C в зависимости от типа двигателя и КПД.

3. Проверка

  • Если сопротивление изоляции нового, очищенного или отремонтированного двигателя, которое хранилось в течение некоторого времени, меньше 10 МОм , причина может заключаться в том, что обмотки влажные и их необходимо высушить.
  • Если двигатель работал в течение длительного периода времени, минимальное сопротивление изоляции может упасть до критического уровня . Пока измеренное значение не падает ниже расчетного значения минимального сопротивления изоляции, двигатель может продолжать работать.

    Однако, если он падает ниже этого предела, двигатель должен быть немедленно остановлен , чтобы избежать травм людей из-за высокого напряжения утечки.

Ссылка: Grudfos - Motor Book

,
Что нужно и что нельзя делать при измерении сопротивления изоляции трансформатора

Измерение сопротивления изоляции

Этот тест проводится при номинальном напряжении или выше, чтобы определить, имеются ли пути с низким сопротивлением для заземления или между обмоткой к обмотке в результате повреждения изоляции .

Что нужно и что нельзя делать при измерении сопротивления изоляции трансформатора (фото предоставлено sonel.pl)

На значения тестовых измерений влияют такие переменные, как температура, влажность, тестовое напряжение и размер трансформатора.

Этот тест должен быть проведен до и после ремонта или когда выполняется обслуживание . Данные испытаний должны быть записаны для будущих сравнительных целей. Тестовые значения должны быть нормализованы до 20 ° C для целей сравнения.

Общее практическое правило, которое используется для приемлемых значений безопасного питания, составляет 1 МОм на 1000 В приложенного испытательного напряжения плюс 1 МОм . Примерные значения сопротивления хороших систем изоляции приведены в таблице 1.

ТАБЛИЦА 1 - Типичные значения сопротивления изоляции для силовых и распределительных трансформаторов

Напряжение обмотки трансформатора (кВ) Обмотка заземления (МОм)
22 ° C 30 ° C 40 ° C 50 ° C 60 ° C
6,6 400 200 100 50 25
6,6 - 19 800 400 200 100 50
22 - 45 1000 500 250 125 65
≥ 66 1200 600 300 100 75

Процедуры испытаний //

Процедуры испытаний следующие:

  1. Не отсоединяйте заземление от бака трансформатора и сердечника.Убедитесь, что бак трансформатора и сердечник заземлены.
  2. Отключите все высоковольтные, низковольтные и нейтральные соединения, грозовые разрядники, системы вентиляторов, счетчики или любые низковольтные системы управления, которые подключены к обмотке трансформатора.
  3. Перед началом испытания соедините вместе все высоковольтные вводы, убедившись, что перемычки свободны от всех металлических и заземленных частей. Также соедините все втулки низкого напряжения и нейтрали, убедившись, что на перемычках нет металлических и заземленных частей.
  4. Используйте мегомметр с минимальной шкалой 20000 МОм .
  5. Затем проводятся измерения сопротивления между каждым набором обмоток и землей. Измеряемая обмотка должна быть удалена, чтобы измерить сопротивление изоляции.
  6. Показания мегомметра должны поддерживаться в течение 1 мин. . Сделайте следующие показания для двухобмоточных трансформаторов:
    1. Высоковольтная обмотка к низковольтной обмотке и заземлению
    2. Высоковольтная обмотка на землю
    3. Низковольтная обмотка к высоковольтной обмотке и заземлению
    4. Низковольтная обмотка на землю
    5. Высоковольтная обмотка к низковольтной обмотке

Соединения для этих испытаний показаны на рисунках 1a-e и 2a-e для однофазных и трехфазных трансформаторов соответственно.Показания мегомметра должны быть записаны вместе с температурой испытания (° C).

Показания должны быть с поправкой на 20 ° C с помощью поправочных коэффициентов , показанных в таблице 1.

ПРИМЕЧАНИЕ! Если скорректированные значения полевого испытания составляют или более половины от заводских показаний изоляции или 1000 МОм , в зависимости от того, что меньше, то система изоляции трансформатора считается безопасной для испытания с высоким потенциалом .

Рисунок 1 - Испытательные соединения для сопротивления изоляции однофазного трансформатора.Примечание: на рисунке (e) поменяйте местами L и E, чтобы измерить от сильной обмотки до слабой.

Для трехобмоточных трансформаторов испытание должно быть выполнено следующим образом //

  • Высоко-низко, третично и заземленно (H-LTG)
  • Высшее, низкое и земное (T-HLG)
  • Низкий до высокого, третичный и заземленный (L-HTG)
  • Высокий, низкий и третичный к земле (HLT-G)
  • Высокий и третичный к низкому и заземленному (HT-LG)
  • Низкий и третичный в высоту и землю (LT-HG)
  • Высокий и низкий к третичному и заземленному (HL-TG)
Не проводите испытания в мегомметрах обмотки трансформатора без жидкости трансформатора , поскольку значения сопротивления изоляции в воздухе будут намного меньше, чем в жидкости.

Кроме того, не проводите испытания сопротивления изоляции трансформатора, когда он находится под вакуумом, из-за возможности пробоя на землю.

Чаще всего используются тестовые соединения, показанные на рис. 2a, c и e. Тестовые соединения на рисунке 2b и d дают более точные результаты . Показания, полученные в соединениях на рисунках 2a и b, практически равны показаниям в испытательных соединениях на рисунках 2c и d соответственно.

Рисунок 2. Испытательные соединения для сопротивления изоляции трехфазного трансформатора

Где:

  1. Соединение для сильной намотки на слабую намотку на землю;
  2. Соединение для защиты от сильной намотки и заземления;
  3. Соединение для слабой обмотки к сильной обмотке к земле;
  4. Соединение для защиты от слабой обмотки и заземления;
  5. Соединение для сильной и слабой намотки.

Приемлемые значения сопротивления изоляции для сухих и составных трансформаторов должны быть сопоставимы со значениями для вращающихся машин класса A, хотя стандартных минимальных значений не имеется.

Масляные трансформаторы

или регуляторы напряжения представляют особую проблему в том, что состояние масла оказывает заметное влияние на сопротивление изоляции обмоток .

При отсутствии более надежных данных предлагается следующая формула:

IR = CE / √ кВА

где //

  • IR - это минимальное сопротивление изоляции 1 В 500 В постоянного тока в мегоммах от обмотки к земле, с другими обмотками или с защитой от обмотки, или от обмотки до обмотки с защитой сердечника
  • C является константой для измерений 20 ° C
  • E - номинальное напряжение тестируемой обмотки, кВА - номинальная мощность тестируемой обмотки
Значения C при 20 ° C
60 Гц 50 Гц
Резервуар маслонаполненный тип 1.5 1,0
Необработанный маслонаполненный тип 30,0 20,0
Сухой или составной тип 30,0 20,0

Эта формула предназначена для однофазных трансформаторов. Если испытываемые трансформаторы относятся к одному трехфазному типу, а три отдельные обмотки испытываются как одна, то:

  • E - это номинальное напряжение одной из однофазных обмоток (фаза-фаза для блоков, соединенных треугольником, и фаза-нейтраль или соединенных звездой).
  • кВА - номинальная мощность завершенной испытываемой трехфазной обмотки.

Тестирование силового трансформатора (ВИДЕО)

Измерение сопротивления обмотки постоянного тока и проверка устройства РПН.

Ссылка // Техническое обслуживание и тестирование электрооборудования от Paul Gill (Покупка печатной копии у Amazon)

,

Испытание сопротивления изоляции мегомметра

Хорошее сопротивление изоляции?

Как вы знаете, хорошая изоляция имеет высокое сопротивление, а плохая изоляция - относительно низкое сопротивление. Фактические значения сопротивления могут быть выше или ниже в зависимости от таких факторов, как температура или содержание влаги в изоляции (сопротивление снижается при изменении температуры или влажности).

Помните, что хорошая изоляция имеет высокое сопротивление; плохая изоляция, относительно низкое сопротивление. Фактические значения сопротивления могут быть выше или ниже в зависимости от таких факторов, как температура или содержание влаги в изоляции (сопротивление снижается при изменении температуры или влажности).

Однако, ведя небольшой учет и руководствуясь здравым смыслом, вы можете получить хорошее представление о состоянии изоляции из значений, которые являются только относительными.

Измеритель изоляции Megger - это небольшой портативный прибор, который дает прямое показание сопротивления изоляции в омах или мегоммах . Для хорошей изоляции сопротивление обычно читается в диапазоне МОм .

Измеритель изоляции Megger, по сути, представляет собой измеритель сопротивления высокого диапазона (омметр) со встроенным генератором постоянного тока.Этот измеритель имеет специальную конструкцию с катушками тока и напряжения, что позволяет считывать истинные омы напрямую, независимо от фактического приложенного напряжения.

Этот метод неразрушающий; то есть это не вызывает ухудшения изоляции.

Рисунок 2 - Типичное подключение измерительного прибора Megger для измерения сопротивления изоляции.

Генератор может быть запущен вручную или работать от сети для создания высокого постоянного напряжения, которое вызывает небольшой ток через и над поверхностями испытываемой изоляции ( Рис.2 ). Этот ток (обычно при приложенном напряжении 500 В или более) измеряется омметром, который имеет шкалу индикации.

Рис. 3 показывает типичную шкалу, которая показывает увеличение значений сопротивления слева направо до бесконечности или слишком высокое сопротивление для измерения.


Что такое «хорошая» изоляция?

Каждый электрический провод на вашем предприятии, будь то двигатель, генератор, кабель, выключатель, трансформатор и т. Д., Тщательно покрыт какой-либо электрической изоляцией.Сам провод обычно медный или алюминиевый, который, как известно, является хорошим проводником электрического тока, который питает ваше оборудование. Изоляция должна быть противоположна проводнику: она должна сопротивляться току и удерживать ток на своем пути вдоль проводника.

Чтобы понять тестирование изоляции, вам не нужно углубляться в математику электричества, но одно простое уравнение - закон Ома - может быть очень полезно для оценки многих аспектов. даже если вы уже сталкивались с этим законом, было бы неплохо рассмотреть его в свете испытаний изоляции.

Цель теста мегомметра

Назначение изоляции вокруг проводника во многом похоже на назначение трубы, несущей воду, и закон электричества Ома легче понять по сравнению с потоком воды. В Рисунок 1 мы показываем это сравнение. Давление на воду из насоса вызывает поток вдоль трубы ( Рис. 1a ). Если бы в трубе возникла утечка, вы бы потеряли воду и потеряли бы давление воды. С электричеством напряжение подобно давлению насоса, заставляя электричество течь вдоль медного провода ( Рис.1б ).

Как и в водопроводной трубе, существует некоторое сопротивление потоку, но оно намного меньше вдоль провода, чем через изоляцию.

Рисунок 1 - Сравнение потока воды (а) с электрическим током (б)

Здравый смысл подсказывает нам, что чем больше у нас напряжения, тем больше будет ток. Также, чем ниже сопротивление провода, тем больше ток при том же напряжении. На самом деле, это закон Ома, который выражается так в форме уравнения:

e = I x R

где
e = напряжение в вольтах
I = ток в амперах
R = сопротивление в омах

Обратите внимание, однако, что ни одна изоляция не является идеальной (то есть имеет бесконечное сопротивление), поэтому некоторое электричество течет вдоль изоляции или через нее к земле.Такой ток может составлять только одну миллионную ампер (один микроампер), но он является основой оборудования для испытаний изоляции. обратите внимание также, что более высокое напряжение имеет тенденцию вызывать больший ток через изоляцию.

Этот небольшой ток, конечно, не повредит хорошей изоляции, но будет проблемой, если изоляция ухудшится. Теперь, чтобы подвести итог нашего ответа на вопрос «что такое« хорошая »изоляция?»

Мы видели, что, по сути, «хорошо» означает относительно высокое сопротивление току.Используемый для описания изоляционного материала, «хороший» также будет означать «способность поддерживать высокое сопротивление». Таким образом, подходящий способ измерения сопротивления может сказать вам, насколько «хорошая» изоляция. Кроме того, если вы проводите измерения через регулярные периоды, вы можете проверить тенденции к его ухудшению (подробнее об этом позже).


Что делает изоляцию испортиться?

Когда ваша электрическая система и оборудование вашего завода новые, электрическая изоляция должна быть на высшем уровне. Кроме того, производители проводов, кабелей, двигателей и т. Д. Постоянно совершенствуют свою изоляцию для услуг в промышленности.тем не менее, даже сегодня изоляция подвержена многим эффектам, которые могут привести к ее разрушению - механическим повреждениям, вибрации, чрезмерному нагреву или холоду, грязи, маслам, едким парам, влаге от процессов или просто влажности в душный день.

В различной степени эти враги изоляции со временем работают - в сочетании с существующими электрическими напряжениями. По мере образования штифтовых отверстий или трещин влага и посторонние вещества проникают сквозь поверхности изоляции, обеспечивая низкое сопротивление току утечки.

После запуска разные враги стремятся помогать друг другу, пропуская избыточный ток через изоляцию . Иногда падение сопротивления изоляции происходит внезапно, например, при затоплении оборудования. Обычно, однако, он падает постепенно, давая много предупреждений, если проверяется периодически. Такие проверки позволяют провести плановое восстановление до отказа в обслуживании.

Если нет проверок, например, двигатель с плохой изоляцией может не только опасно прикасаться при подаче напряжения, но и подвергаться выгоранию.То, что было хорошей изоляцией, стало частичным проводником.

Ресурс: Справочник Megger

,

Смотрите также